63.- Pedro realiza un trabajo en 10 horas y su ayudante, en 15 horas. El ayudante comienza primero y, después de 5 horas, trabajan juntos hasta terminar la obra. ¿Cuántas horas trabajaron juntos? a.-) 5 b.-) 6 c.-) 4 d.-) 3 e.-) 7 Pedro = 10 horas Ayudante = 15 horas Este problema se resuelve aplicando los conceptos de velocidad de avance para cada uno en cualquier Obra en una hora: Si Pedro termina un trabajo en 10 horas, en 1 hora lógicamente solo terminará 1/10 de la obra. Si el Ayudante termina un trabajo en 15 horas, en 1 hora lógicamente solo terminará 1/15 de la obra. Pedro avanza 1/10 de cualquier Obra en 1 hora El Ayudante avanza 1/15 de cualquier Obra en 1 hora Ahora sabemos que en ESTA OBRA, el ayudante empieza solo en las primeras 5 horas, por lo cual avanzaría en esas 5 horas: 5 horas x (1/15 Obra/hora) = 1/3 parte de la Obra total Osea que cuando Pedro se une, ya está terminada la 1/3 parte de la Obra total y solo faltan las 2/3 partes que la harán juntos. La Velocidad de avance de ambos por hora será igual a la suma de sus velocidades por hora. Velocidad de Avance juntos por hora: 1/10 + 1/15 = 1/6 de Obra por cada hora 1/6 Obra ----------- 1 hora 2/3 Obra ----------- X Es una simple regla de tres X = (2/3) / (1/6) = (2/3) * 6 X = 4 horas Respuesta = "c" | |
<< Anterior | Siguiente >> |
Ejercicios de Matemática |
Publicidad |